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AN UNCERTAINTY ANALYSIS FOR SATELLITE CALORIMETRIC
MEASUREMENTS
By John P. Millard

Ames Research Center
SUMMARY

The use of an uncertainty analysis for analyzing current data and for
designing future satellite calorimetric experiments is described. Calorimet-
ric experiments considered are those for measuring the radiative properties of
solar absorptance and infrared emittance of test surfaces, and those for mea-
suring the emissive and reflective properties of the sun and planets. The
paper describes the uncertainty-analysis technique, lists all pertinent equa-
tions for each measurement, presents several illustrative examples, and
includes a section on design guides for future experiments.

INTRODUCTION

Several calorimetric flight experiments have contributed data on the
thermal-radiation properties of materials and planetary thermal environments
(refs. 1-10). These data have added to knowledge of the long-term ultraviolet
stability of thermal-control surfaces, the magnitude of infrared energy
emitted by the earth, and the albedo, or portion of direct sunlight reflected
by the earth. Additicnal measurements are required both to complement exist-
ing ones and to provide data on other planets, the sun, and new materials in
the various radiation environments of space.

A valuable tool for analyzing current data and for designing future
experiments is an uncertainty analysis. It can identify major sources of
uncertainties, the effect of each on overall measurement, and values of exper-
iment and orbit design variables that will minimize those effects. The use of
the analysis for satellite calorimetric measurements is demonstrated herein;
examples are included. Pertinent equations and design guides for the
following measurements are tabulated:

) Solar absorptance of a test surface

) Infrared emittance of a test surface

) Solar absorptance to infrared emittance ratio of a test surface
) Solar constant

) Planetary albedo

) Planetary infrared emission

The content of the report was derived from a study of uncertainty associated
with the Ames OSO-III Thermal Control Coatings Experiment.



NOMENCLATURE

albedo

area of the sensor, e
specific heat of the coating, J/gm °x

view factor for albedo, defined by H, = FaS

view factor for planetary infrared radiation, defined by HP = FPP
view factor for solar radiation defined by HS = FSS

energy incident on the coating due to albedo, W/m?

energy incident on the coating due to planetary infrared radiation,
W/m?

energy incident on the coating due to the sun, W/m2
radiation heat loss coefficient, W/%K*
planetary infrared radiation, W/m?

net heat loss due to imperfect thermal isolation of sensor on back
side, W

solar constant, 1360 W/m®
temperature of the coating, °K

°x

temperature of the base plate,
function of n 1independent variables

mass of sensor disk, g

independent variable

NV x,

i
ox;
conduction heat loss coefficient, W/%K

planetary-radiation absorptance of sensor surface

solar-radiation absorptance of sensor surface



a albedo-radiation absorptance of sensor surface

a
e} Qs = Oy

€ emittance of sensor surface

e time, sec

v € -ap

o Stefan-Boltzmann constant, 5.67x10~8 W/m® ©Ox*

CALORIMETRIC TECHNIQUE

A Dbrief description of the calorimetric technique is presented to
establish basic equations, terminology, and nomenclature.

The calorimeter considered is a thin wafer of material, called & sensor,
which is thermally isolated on one side and which views the environment of
space on the other. See figure 1 for a typical sensor. The temperature of
the sensor i1s measured in orbit. From that measurement, one can deduce the
amount of radiant flux emitted or reflected by a planet or the sun, the
absorptance of the sensor for that radiation, or the infrared emittance of
the sensor. The technique of deducing one of these unknowns utilizes an
energy balance. An unknown is solved in terms of other variables, such as
sensor temperature, heat capacity, surface radiative properties, solar con-
stant, and view factors. Two or more sensors may be used simultaneocusly if
more than one unknown exists. The simultaneous technique exploits differences
in optical properties of sensors. Thus two sensors, one sensitive to long-
wavelength and the other sensitive to short-wavelength radiation, could be
used to measure the radiant flux emitted by a planet and also that reflected
by the planet.

The basic energy equation from which an unknown may be determined is:

aT

= 4 et
FoSAxg + FpaSAa, + FpPAa, = AcoT + we s + o Qp (1)
(Solar) (Albedo) (Planetary (Sensor (Heat (Heat
emission) emission) storage) leak)

The terms on the left are radiation inputs to the sensor. These are defined
by the flux at the source, the view factors from source to sensor, and the
absorptance of the sensor for that radiation. The terms on the right repre-
sent radiant emittance of the sensor, changes in heat storage of the sensor,
and heat lost from the back because of imperfect thermal isoclation. See
Nomenclature for definition of symbols.



Certain modifications of equation (1) are desirable. First, albedo
absorptance o can usually be related to solar absorptance Qg by the

relation:

a

Gy = oy =B (2)
where & represents a small deviation. These absorptances may be nearly
equal because of close spectral match of direct and reflected sunlight. Sec-
ond, the absorptance of a sensor for planetary infrared radiation, ap, can be
related to infrared emittance, €, of the sensor by

€ -ap =v (3)
where v vrepresents a small deviation. The equivalence of these values can
result from either similar temperatures of sensor and planet, or flat sensor
spectral characteristics. Third, the heat-leak term Qp can be expressed as

Qr, = K(T* - T,*%) + ¥(T - Ty) (%)

where K and Y are proportionality factors, T ig temperature of sensor, and
Ty, 1s a characteristic temperature of the structure behind the sensor. When
these three substitutions are made in equation (l), the energy equation
becomes

FShag + FaaSA(ag - 8) + FpPA(e - v) = AcoT* + we 22 + K(7% - T%) + (T - Ty)

5 de
(5)
Equation (5) is the form of the energy equation used in this report.
Solutions of it for various variables selected to be the dependent variable
are listed in appendix A. Simultaneous solutions of two such equations are
listed in appendix B.

UNCERTAINTY' ANALYSTS

The calorimetric technique defines an unknown in terms of other vari-
ables, The effect of uncertainties of these variables on accuracy of
measurement of the unknown is discussed in this section.

A general method of analyzing uncertainty will first be described; it
is that of Kline and McClintock (ref. 11). Consider V to be defined by the
variables Xi, Xa, « « e, X3, o o o, Xp.  An uncertainty Ax; in the value
of x;, will produce an uncertainty (dV/dx;)Ax; in the value of V, to a
first-order approximation. The overall effect of uncertainty in more than
one variable is not necessarily the sum of the individual effects. If the
uncertainties are independent and equally probable, then the uncertainty in

V can be described as:

lUncerggintjiiéiiéfined as a possible val&é'within which an error bf
measurement is estimated to fall with a given degree of certainty.

L




v BV 2 3 2 1/2
AV = |: aXl AXJ_) + axz AX2> + e e . + a—xj-' AXi> + e an AX’H) ] (6)

where AV has the same assurance associated with it as that used for
selecting Ax;.

Overall uncertainty of calorimetric results may be computed from equa-
tion (6). The computation requires two inputs: (1) the partial derivatives
of the unknown with respect to each variable, and (2) the uncertainty of each
variable. Appendixes C and D are tabulations of the partial derivatives of
g, as/e, €, S, a, and P with respect to each of their variables.® Appen-
dix C pertains to single energy-equation solutions, and appendix D to simul-
taneous solutions. The uncertainty of each variable must be known or
estimated.

Selecting Values of Experiment and Orbit Design Variables

At design, one must specify the uncertainty with which each variable is
to be measured, plus the magnitudes of the variables relating to orbit, orien-
tation, and sensor characteristics. The magnitudes of the variables are
important because the values of the partial derivatives, used to compute
overall uncertainty, are functions of them.

The uncertainty-analysis equation, equation (6), and the partial deriva-
tives in appendix C provide means for judiciously selecting the foregoing
values. A closed solution, however, does not exist; an iterative procedure
mist be used. The procedure is as follows:

(1) Examine the partial derivatives; select conditions that appear to
minimize each.

(2) Select reasonable values of uncertainty for each variable.

(3) Calculate and compare overall uncertainty for each set of conditions;
select those conditions yielding least uncertainty for refinement.

(4) Compare individual-effect terms, (dV/ox;)ax
of uncertainty.

;» to locate major sources

(5) Iterate as required.

All values must be consistent with any constraints, such as orbit of a
specific spacecraft or accuracy of its telemetry system.

2p11 variabléé employed herein are independent, except the view factors

F, and F_  which are mitually dependent. Therefore to use equation (6

2
replace the terms <éy_.AFP> + <§y;-AF > with (9 AFp + AF
OFp Fg & OFp



Examples

Three examples will illustrate some of the uses of an uncertainty
analysis. The first two relate to the Ames experiment on 0SO-III; the last
is hypothetical.

. The Ames experiment is composed of several flat-disc sensors, figure 1,
each mounted in a special cup to minimize heat leak. In orbit, the sensors
scan both the earth and the sun once very 2 seconds because the spacecraft is
spin-stabilized; the spin axis is maintalned perpendicular to the satellite
sun line. The orbit of the spacecraft is nearly circular at 550 km altitude
and inclined 33° relative to the equator.

Energy flux

Sensor disk, I" dia
/_—_\

Plastic supp%

=

Thermistor for
temperature measurement

Mounting cup

Polished radiation shields

Figure 1l.- Design of sensors for 03S0-II1 experiment.

The first example illustrates the selection of best location in the
0S0-III orbit for measuring as/e of a white coating. The magnitude of the
variables and the uncertainty associated with each have been selected
(table I). TFigure 2 is a theoretical time-temperature profile of the sensor
for a typical orbit. The reasons for the shape of the profile are as follows:
(1) the satellite entered sunlight at time zero, hence the rapid rise in tem-
perature, (2) the albedo view factor from satellite to earth reaches a maximum
when the satellite is at the subsolar point, hence the maximum temperature at
midday, and (3) the satellite entered darkness, hence the rapid fall in tem-
perature. Figure 3 is a plot of uncertainty of measurement as a function of
time in orbit. Both individual effects (JV/dx;)Ax;, represented as 5x;, and
overall uncertainty, computed by equation (6), are plotted. Waviness of some
of the curves is due to the continuous change of view factors and temperature
of the sensor. It can be seen that the major individual effects result from
uncertainties in the variables albedo, earth radiation, heat capacity, and
rate of change of temperature with time. The effect of uncertainty in albedo
is greatest near the subsolar point because albedo input to a sensor is
greatest there. Heat capacity and temperature rate effects are maximum at

6
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Orbit time measured from satellite entrance into sunlight, min

Figure 2.- Temperature of illustrative-example sensors vs. orbit time.

20 —

Uncertainty in measured value of ag/c, percent

0o 10 20 30 40 50 60
Orbit time measured from satellite entrance into sunlight, min

Figure 3.- Uncertainty in measured o.s/e of a white coating vs. orbit time.

satellite entrance to sunlight because the temperature of the sensor changes
50 rapidly. As a result, overall uncertainty is a minimum at about 6 minutes
after the satellite enters sunlight, and Jjust before it enters night. These
are the best locations for making the measurements.
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(a) Very low as/e coating vs. orbit time.

Figure 4.- Measured uncertainty in earth radiation.

The second example illustrates the selection of a very low as/e coating
in preference to an optically black one for measuring earth radiation. The
magnitudes of the variables and the uncertainty to be associated with each are
included in table T. The value of albedo assigned to the example is 0.30, and
uncertainty of the value, +0.20. This value of uncertainty may be high if a
second sensor were employed to measure albedo. The uncertainty selected, how-
ever, will emphasize the advantage gained from using the low as/e coating.
Theoretical time-temperature profiles of the two sensors are plotted in fig-
ure 2. Uncertainty of measurement made with the very low as/e sensor is
plotted in figure 4(a); uncertainty associated with the optically black one
is plotted in figure L(b). The major difference between the two is the large
effect of uncertainty of albedo on the optically-black sensor. The effect of
nearly all uncertainties, however, seems to be larger. Overall uncertainty
associated with the black sensor i1s more than an order of magnitude higher
than that for the low aS/e sensor at the subsolar point.
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(v) Optically black coating vs. orbit time.
Figure k4.~ Concluded.

The third example illustrates the procedure for selecting magnitudes of
variables for measuring the solar constant. First, an examination of the
equations in appendix C (pp. 23-25) shows that the magnitudes of the partial
derivatives will be minimized if (1) the sensor is sun-oriented, that is,

Fg = 1, Fp = 0, Fg = 0, (2) ag is large, (3) thermal mass is small, and (k)
heat leak is small. What is not obvious is the best magnitude for e. To
determine that magnitude, values of magnitude and uncertainty were assigned
to all other variables. Uncertainty values were assigned to ¢, and then
individual effects and overall uncertainty were computed as a function of €.
The magnitudes of the variables are tabulated in table 1. The resulting
uncertainty as a function of € is plotted in figure 5. It is seen that
minimum overall uncertainty is obtained when € approaches unity, hence ¢
should be assigned a value near unity. It is interesting that the effect of
heat leak is nearly negligible. Note, however, that heat leak effects for
other measurements are not usually negligible.
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Design Guides

Several important factors that will guide both the design of experiments
and the selection of conditions at which to reduce data were obtained from a
general analysis of the energy-equation partial derivatives. Those factors

are as follows:

I.

Material Optical Properties: Solar Absorptance and Solar Absorptance
to Infrared Emittance Ratio

A.

Under steady-state and negligible heat-leak conditions, the solu-
tion for as/e tends to become independent of knowledge of €.

Determination of ag, however, is dependent upon knowledge of €.
In general, the solution for ag and as/e of low € coatings is
critically dependent upon accurate knowledge of € and heat leak.




IT.

ITT.

IvV.

Temperature sensitivity, OT/dag or OT/d(ag/e) decreases with
increasing temperature; therefore, this effect should be fully
evaluated.

Effects of uncertainty in albedo input can be minimized by
making measurements near the day-night terminator, where albedo
input to a sensor is nearly zero.

Material Optical Property: Infrared Emittance

A,

B.

The gquantity oT% - FPP, which represents net infrared heat
exchange must be maximized; when it is zero, € cannot be
determined.

To avoid confusion between infrared emittance and absorptance,
sensor should be oriented so as not to view a planet.

Solar Constant and Albedo

A,

B.

c.

Sensor should have a high value of ag.

The value of € for the sensor should satisfy two conflicting
requirements; a high value to achieve operation at cool tempera-
tures where both dependence on € and heat leak from back side
are small, and a low value to minimize planetary infrared input.

Two adjacent sensors with the same field of view cannot
distinguish between direct and albedo sunlight.

Planetary Infrared Radlation

A,

B.

Sensor should have a high value of €.

Sensor should have a low value of ag for both operation at
cool temperature where temperature sensitivity, aT/BP, is
greatest, and for minimizing effects of uncertainties in solar
and albedo terms.

Measurements are most accurate on the dark side of an orbit

where uncertainties in solar and albedo inputs can be
eliminated.

11



CONCL.UDING REMARKS

An uncertainty analysis was shown to be valuable for the design of
satellite calorimetric instruments, and for selecting most appropriate orbit
conditions for making measurements. Mechanics of the analysis were described
and examples presented to demonstrate its use. Equations tabulated in the
appendix plus design guides listed in the text should aid design of future

experiments.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Sept. 27, 1967
124-09-05-03-00-21
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APPENDIX A

SINGLE ENERGY-EQUATTON SOLUTIONS

Solar absorptance, oag

1 we dT X a 4 Y ]
g = ————— | e(oT* - FpP)+ 2= 2= 4= (T*-m ¥+ L (T -7 )+ yF P + 8F_as
S S(FS+Faa)|:( PP a0 a ¢ )+ g (T -Tp)+ vEpP + 87,

Solar absorptance to infrared emittance ratio, as/e

[0

S 1 4 we AT | K /ma 4y, ¥ v )
- = —— | 0T" - FoP+ — —+ — (T - T + — (T-Ty)+ = FpP+ = F_aS
€ S(FS+Faa)[ PP cA do eA( b ) eA( b)*+ g FpP c Ya ]

Infrared emittance, ¢

1 wc dT K 4 4 Y
€ = ———— | Sou(Fa +Fqa) - = =—— -= (T7 - T -~ = (T-T)- vFpP - 8F4aS
oTA - FPP [ S( g a ) A dg A ( b ) A ( b) P a ]
Solar constant, S
1 7 we dT | K 4 4 Y
S = e(oT* -FpP) + 2= 2o D (T4 oy *) 4+ 2 (T -Dy) + vFP
ag(Fg + Fa) - 6Faa{ Pt B a b /7y b P
Albedo, a
1 [ 4 we dT . K (ma 4y, Y i
a=— " |e(oT?-FpP) ~aaFeS+ X2 S 2 (P2 )4 L (7= T )+ vF PJ
Planetary infrared radiation, P
1 4 we dT |, K /4 4y, Y
P=—""|6e0T" -(Fa+¥F a)log +— —+= (T"-T + = (T -T,, ) + 8F aS
Fple-v) [6 (Fg + Fan)Se A de A ( LR ( 2 & ]

13



APPENDTIX B
SIMULTANEOUS ENERGY EQUATION SOLUTIONS

ag, Fah elim%pated

GJSZ - 62

G = L :
S1
daT K 4 4 Y
= += To™ - T + = To =T + F P - 82F5
> dola A|2( 2 be) Alz( 2 be) Val'p 2fg

€s0To? - e oFP + 22
2012 2tp L

wC

{%10T14—61FPP%-—— dt

K 4 4 Y
= - 4+ = Ty -
L a9 1+All(Tl Tbl) AI l( 1 Tbl)+ VJ_FPP

A

01 a wel 4T K
+ ——— | €50T - €5 P - g FaS 4+ —= =} +=
asz-az[z 2 TP U887 T |z qgle TR

4 4
2(T2 Tbe)

Y
+ 2 (Ta-my, )+ voF PJ}
1| (72 - T ) vare

“Sl FPP eliming?i%

1 {’ 4, WC dT KI 4 4 Y
ag, = ——=— Jei0TF+ =] —=| +=| (T2 - Ty Y+ = (T - Ty, ) + 81F a8
N a
(FS-+Faa)S Ajrdglr alx 1 AL 1
vy -€1 4 we| 4T K 4 o4
viter - (F + S el == 4+ 2 -
€2 -vo [egOTz (Fg + Fga)Sagy + Alz 3gl=2"& 2(T2 Tos)

+ %Iz(rpz - Tp,) + E>2Faa8] }

lSubscripfé lAand QHdEhbte éenéorg-one and twd.
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S F.a eliminated
€ a

1

€

asl_ “sgfiaz
* aT
€1| €20To? - exF P+ ¥E | To?- T ) +_| T + poF P - anJ
1l:2 2 2FpP+ =, 51 A( bs (T2 - Tp,) + vaFyp 2Fq

4 c daT K 4 Y
{elch ) elFPP+WI 1d6 11 " K'l(Tl4 B Tbl) +K|1(Tl -Tbl)+ vaFpP

5
+— ]iengg - eaFpP -ag Fgs + 22

aT 4
To™ -T
&g, = B2 A 2 AI ( b2)

2d6

Y
+ = To-T + FoP
A|2(2 b2) Vzp}}

g
—_— FpP eliminated
€ |a P

[0
S 1 { 4 WC K 4 4 Y
S| - e20T+ 52 | —| (Ty* - Tf )+_| (Ty =Ty, ) +81F a8
€11 (Fg+Fya)ess 1 de Alx 1 AL 1
Vi-€1 we aT
+ ——— | ep0Te?- (Fg+Fya)Sag_+ = l I ‘ - T
62-1/2[2 2"~ (g 535, Alz dagle Al=2 (T2* bz)
Y
+ KIa(TZ.-Tba)Jr agFaasJ}
€1 Fia eliminated
1 we dTl Kl 4 4 YI
€1 =— = Qaq FaSs-YXo| == &) (7y*-12 )-2| (Ty -T. ) - viFpP
* 0T14-FPP{SlS Aliaolh Al(l by Al(l by) - VaFp
+OLS—1—E 2(0Ta% - FuP) - o Fos + 9| 4T |( 4_ 4 o)

+ K‘e(TZ -Tp )+ VQFPPJ }
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€1 FPP ellmlnated

€a-ve
€1 = -
(€2—V2)O'T14— ‘:€2OT24-(F5+Faa)SQ52+W— gg - AI ( 2 - T-g )+§~i2(T2~Tb2)+ BgFaaS]
F+F_a)Ss we dTI Bl peo e Yo Y| (7, -m ) - 8yF.aS- [ 4
{( q+F a) g, - T L asl A 1( 1 bl) n 1( 1-Tp, )~ B1F,a P—. €20T>
daT
_(FS+Faa)Sa82+W_02d62 Al (T4-Tg +_ (Tg -Tp,) + BoF asJ}
Solar constant FPP eliminated
1 1 4, We aT
S — .- e — — )] €07 %+ =] ==
5 SoF {<€l“vl>[l T UA | aely
a a a
S (Fg+ Fpa)- =2 =8
€-v G'VI €1-V1 €2-V2
K 4 a4, Y 1 ' a, we| 4T
+ = T1™ - + =] (Tq- - ——— €x0T —_—
" 1( 1% - Tp,) 2 1( 1 Tbl)J <;2 _V2> [ 292 " 1|, @8,
K 4 4 Y _
+ KIE(T2 Tb2)+KIE(T2 sz)]}
Albedo FPP eliminated
[0
B = - {oTl"‘-_ﬁ Fgs + XS drp , K (T1%-15,)
st-s € - 6—(1:8 € 1 eAlde €Al
Fg5 +
€ 1 € 1 €-V
S aT
+ Ty - T - oTs™ - =2 F SIA
EAl(l ) <€2'V2 >[ =" 5 €A2d9
K 4 4 Y
+ = To™ - T + = To - T
] ez e 2 (e bQJ}
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Planetary infrared radiation Foa eliminated
A (], -2|,) [onse - 22| s
. <ons-6 v Qg =B _OLS—S €-v > €l €z 18
P € 1 €lz € 1 € 2 € I1
wep dT| | K a_may, Y %l _s “s
—| =| +=| (To*-72 )+ | (T -T )J-<—- -= oTa*~ 2| FgS
€A 1 de 1 cA 1 bl cA 1 bl c 1 c 2 5 S
wel 4T X 4 a4’ Y
+ —] —| +—=] (Ie"-T )+ =—{ (T=-~-T
€Alz dol=a €A (T2 ba) €A 2( 2 bE)J}
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APPENDIX C

PARTIAL DERIVATIVES OF SINGLE ENERGY EQUATION SOLUTIONS

ag - single

1 [( wc AT K ;ma o4y, Y
Q= ————— oT* - FpP) + — —+—(T -4+ = (T -Tp)+ vFpP+ OF aSJ
8 g(Fq+ Foa) a6 A A E P a

4
Bas _ 0T~ FpP
de  8(Fg+Fya)

Partial derivatives were developed with respect to two sets of independent
variables involving temperature and time; either set may be used. The first
uses T and 6.

3
34 ¥C 9 dT+uKT LY
dag Mo+ an et A TR

oT S(Fg+ Faa)

N, ¥ o dr
“s __A d0 46
06  S(Fg+ Fga)

The second uses T and dT/do.

heoT3+ AKT8+-X
aOLs= A A
oT S(FS4-Faa)
wcC
dag _ A .
5 4T S(Fg+F a)
do

aFP S(FS+ Fga)

Basl_-Fa(aS -3)

3
a FS+-Faa
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dog B -ocS(FS +F,a)+ oF a

d8 s(FfS +Fga)

o 7 ()

aP S(F +F a)

doug -Lwc g—g +K(T* - 7 %) + ¥(T - Tb)]
e .

SAz(FS +Fga)

dang  ~(4KTy®+ )

Oy, SA(FS +F_a)

aas T4 - Ty, %
3K SA(FS +Fga)

S T-T,
Y SA(Fq+TFga)

GGS ) FpP

v 8 (FS +Fga)

aCLS _ Faa
9B  Fg+Fga

as/e - single

aQ 1

g we dT X 4 4 Y v o)
== | oT*- FpP+ 5 (T%-m*)+ = (T -Tp)+ = FpP+ = Fgal
€ S(Fg+F,a) [ ch de ch b eA b/ e €
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a we AT K rm4a 4y Y :
a _€§ —[-A— d9+A (T T‘b )+K (T— T'b)+ VFPP+ BFaaSJ

de Se2(Fg + Fya)

Partial derivatives were developed with respect to two sets of independent
variables involving temperature and time; either set may be used. The first
uses T and 0.
< d 4T, hKkT® | Y
3 B ygrd4+ XS S £
_ of ch OT d6 A €A
OT S(FS4—Faa)

398 we 0 4T
€ _ _chA 36 a6 _
36 S(Fg+ Fgua)

The second uses T and dT/de.

+ —

3% hgzoy KIS, Y
€ _

_ ch chA
oT S(FS+-Faa)
o
S we
S € _ chA
5 4T S(Fg+ Fga)
de
3 s
€ _ €
BFS FS+Faa
Q,
> (22
_ S €/
aFa Fs'l"Faa
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a, S s}
02 - (Fg+Fa)s o F

c a
oS S(Fg+Fga)

(e

S v
€ FP< €>

3P 8(Fg+ F,a)

)

328 e dr
€ ___€hA df
dw  S(Fg+Fga)
S “s  w atr
€ chA de

3¢ S(Fg+ Fga)

a dT
3 _€§: -[vc d—9—+K(T4- Ty, *) + (T 'Tb)J
o

SeA2(Fq + Fga)

>

OLS 3
> & -(4KT 2+ Y)
dT,  SehA(Fg +F,a)
&,
S 4 4
9  T-m

3K  SeA(Fg+ Fga)

Q

s
Y  SeA(Fg+ Fya)
(&9
3 2 FpP
dv  Se(Fg+Fga)
04
ol -ES- Fga

3 e(Fg+Fua)

4 4 Y
( ™% - T (T-m,) - vFpP - SFaas:l

21



de :=S(FS+-Faa)
dug  oT*- FpP

Partial derivatives were developed with respect to two sets of independent
variables involving temperature and time; either set may be used. The first

uses T and 6.
3
| hegTey ¥C O (AT, hKT® ¥
_BE_ I: ABTrdQ A Aj

oT oT4 - FpP
we ) <j >

J¢ A S8

% oT% -

The second uses .T and dT/de.

4
oT oT*- FP
LA

de A
4T oT4-F_P
dae

de _  Sog

4
OFg oT*- FpP

de  _ aS(ag - )
9F, oT%- FpP

de ZP(€~V)
Z
6FP oT%- FpP

Se__FaS(@S"S)
R
da  oT#- FpP

de aS(FS+-Faa).7§Faa

N 4
as oT -FPP

22



_aEZFP(G -V)
0P oT*- FpP

1
3 7 (uKTb3+ Y)

STy oT? - FpP

de % (7% - Tp%)
3K om- F P

de _ % (- 1p)
§§_= -FpP

Ay oT4_ FPP

de —FaaS

SNe | ma
8  oT*- FpP

Solar constant - single

1 [ 4 we dT K ;a o oay, Y
S= — - — e e(oT* - FpP)+ = =+ = (T*- T *) o+ = (T -Ty)+ vFP
P b P
ag(Fg+F a) - 8F a A dg A b A
38 -S(FS+Faa)



BS UT4— FPP
de ag(Fg+ Foa) - oF,a

Partial derivatives were developed with respect to two sets of independent
variables involving temperature and time; either set may be used. The first

uses T and 4.

3, we O [dT\ LKT® Y

+ = 2 (== T 42
5_S=L+€UT A OT <d9 A 'k
oT CLS(FS+ F,a) - 8F 2

we O (At
dS A J6 \do

do aS(FS +Fga) - 8Fga

The second uses T and dT/do.

3, LKT® Y
8_S= heoT® + n +K
OT ag(Fg+Fya) -8F,a

IAE
S _ A
3 g_g ag(Fg+ Faa) - 8F a

dS —agS

JFg OLS(FS +F, a) - 8F a

38 -(ag - 8)as

OF, oag(Fg+Fga) - 8Fa

3s _ =(e-w)P
3Fp og(Fg+Fga)- 8Fga

as -(€ - 'V)FP
P ag(Fg+ Fgya) - 8Fga

39 -(ag - B)F,S
da og(Fg+ Fga) - 8Fga
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Q
e

|

=0
o
@

I
dw ag(FPg+ Fya) -8F a

da

=

w
3. A
de ag(Fg+ Fga) - 8Fa

D

ar
3 -[wc EQ-+K(T4 - Ty ?) +Y(T -Tb‘)]

oA A2f[lag(Fg+ Fya) - BFgal”

3 - (L4KT, 3+ Y)
OTy *A[dS(FS +Fga) - 8F al

as B T4 - T_b4-
OK Alag(Fg+ Fga) - 8F,al

35 _ T-T,
oY Aflag(Fg+ Fga) - 8F a]

38 _ FpP
dv ag(Fg+ Fga) - 8F,a

38 Fj as
9 ag(Fg+Fga) - 8F a

Albedo - single

a= L

= = e(oT*-FP) ~acFS+ ¥ AL K pa 4y Y p L vy LEop
Fas(“s-S)[ pP) - agFg (T%- ) + = (T -1p)+ vFp

A dp A

da -~(Fg+ Fga)

dag  Fglag - d)

da  0T%- FpP
de FgS(ag-3)



Partial derivatives were developed with respect to two sets of independent

variables involving temperature and time; either set may be used.

uses

The second uses

26

T and ©O.

3
heoT®+ ¥ O dT ), MKTS | Y
% 7" "W ST\de) K A
oT F S(ag - 3)

we O (dT
da_ A 36 \do/

00 FaS(aS— 3)

T and dT/d6.

da_ A
oT  FgS(ag-8)
E
da_ _ A
y 4T FgS(ag - )
ae
da -0g

oa _-a
OFy F,
da _ -Ple -v)

OFp Fg8(ag~d)

.@E: —FP(e - V),
oP F s(ag -d)

3S F S
¢ dr

da_ & do

ow F S(ag~3)

The first



w ar
da_ A dg
dec F_S(ag - 8)

dT
- -l:wc 5 K(T* - T *) + Y(T - Tb)]

S& 2
oA F_SAZ(ag -5)

da  ~(4ET,®+Y)
3T, F,SA(ag- B)

aa ~ T4 _ T_b4
XK F5h(ag - 5)

ga_  T-Tp
dY FSA(ag - )

da_ _ PP
v Fy8(ag - d)

da__a
o8 aS-S

Planetary infrared radiation - single

1 4 we AT, K /m4 4y Y
rP=— gT* = (Fa+ Foa)S0a+ — ==+ = (T -T += (T -T.)+ dF_ a8
FP(E ) [E (Fs a8) ST A ao & ( b ) N ( b) a ]

3P _ -S(Fg+ Fga)
E)O(‘S FP(G - V)

dp oT* - FpP
de Fp(e -v)
Partial derivatives were developed with respect to two sets of independent

variables involving temperature and time; either set may be used. The first
uses T and 6.
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oP 1 3. we O 4T  4UKTS | Y
o = lheoT®+ 2= == =+ 4=
dT Fple-v) <e A OTde A A

we O drf
OP_ A 06 d6
Jol2 FP(GZ-V)

The second uses T and dT/d6.

°__ 1 <l+eoT3+ hgr® | X)
oT FP(e— V) A A

w_c
P _ A
B.d_T_ FP(e"V)
de

aP _ -SQ,S
OFg Fple-v)

5P __—aS(aS— 8)

OFg, FP(e- V)

op _ -P

op_ -FgS(ag- ®)
da  Fple-wv)

5P -[G,S(FS+ Foa) - 8F 2]
dS Fple-v)
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aT

¥
OP_ A dg

ac—FP(e- v)

ar
- -[wc 55+K(T4 - Tb4) +Y(T - Tb)J

A FPAZ(e—V)

op _ -(4KTy®+Y)

OTy, FPA(G -v)

op  T4-Ty*
K FpA(e-v)

éE:: T -Ty _
oY FPA(e -v)

B_P = P
dy €-v
dp .  Faad

BS_FP(G -v)
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APPENDIX D

PARTTAL DERIVATTVES OF SIMULTANEQUS SOLUTION

Conditions for solution of oag:

(1) (FS + Faa)S eliminated by virtue of simultaneous solution
(2) v=8=20

(3) View factors ll = View factors |2

Substitutions:

(1) Let Dy represent €2UT244-€2FPP—+E—

4 Y
| (2% - 78)+ 7| (T2 Tp,).

gdeg A

(2) Where possible, expressions have been simplified by writing them in terms
of ag,.
1

Equation for ag:

4 we 4T K 4 4 Y
Q‘Sg [elch - ElFPP‘l" N d@ l+A (Tl - Tbl)+ Kll(Tl - TLbl)J
817 o ar
€20To? To*= T +— Ty -
20712 iR Al (T bz ( > = Tp,)
Partial Derivatives:

Basl :CLS:L

6@82 %Sz

BCLSl_ CLS (GTl "FP )

o€ 4 wey dT| 4 L

Ts™ - €eaFpP +— —| += To 7 4—— Ts - T

€20To 2FpP 2 | 30)s A, ba ) ( 2 b2)
oT1*- FpP
S(FS+Faa)

4
aqsl::-qsl(chgleP?)
562 Dl

4
-asl(ch - FpP)

asgs(FS-+Faa)
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Partial derivatives were developed with respect to two sets of independent
variables involving temperature and time; either set may be used. The first

uses Ty, Ts, 61, and H5.
3, 7Y
+ =
aTl < l;> AIlJ
oTy

K
aQSl ~ag, [hegoTz + == |2 5T2 |2> | h1® +

AT5

3 WC
aasl CI.SZ |:)+€ lOTl

.

5(1 l O‘Sg A l ael

361

— wcC
Baslz Sl A 592
02

The second uses Tp, Ts, dT/d6|,, and AT/d0|z.

3, K 3, I >
aa‘Sl :CLS2 <li€lGTl + KIlJ—FTl + i 1
BTl D]_

/ K Y
aasl —C(,Sl K)-(-€20“T23+ K 2)+T23 + K 2>
oz D

wC
aCLSl _ O“82 —A—.ll
ar D1
ae |1
wC
5@8 Sl T
5 4T D1
dad |z

31



OF4 OFg as

6“81_‘FP(a81€2"a82€1)

aP Dy

dag, Sz All de

an Dl
T Klz o
BWQ Dl
aOLSZL_OLS2 A|1 dg |1

decy D1

ao[’Sl _ 81 A|2 dglz
5C2 D1

daT 4 4
ao“sl' g |:wc|l £|l+ Ki(T,%- Tbl) + Y (T - Tbl)]

aA]_ Alz(Dl)

-
dag, %3, Lwclz %g|2+'K2(T24"ng)*'Ye(Tz 'Tbg)J

aAg A22(Dl)
X 3 Y

dug, B2 <K Vb K|1>

3Ty,

K 3 Y
aonsl _ Py <K|24Tb2+ KL)
dTp, Dy

When a common base plate is used for both sensors, and a single temperature
measurement is made, the partial derivative is the sum of the previous two.
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K 3 , Y K 3 Y
aC('Sl ) —(1482 <K|lthl+ K|l>+CLSl <K|2,+Tb2 + K|2>

OTy, D1

aasl _ QSE(T14- T-gl)
OK1 A;(Dy)

4 _ 4
Bot,sl ) -asl(Tg - Tba)
9Kz Az(Dy)

ao"Sl =Q‘SZ(T1 - ,ILbl)
Y, A;(D1)

Baslz —G,Sl(TZ - Tbg)

oYs As(Dy)
we
l5a81 €ZGT2 - ezFPPﬁ-jr .
081
~ qstaaS
o
we dT
Qag, '[“‘l"Tl *E | a8
3Bo
B -(IleaaS
Dy
Oag, ag FpP
ovy D1

éasl _ —(ISlFPP

Ovo Dy

aT
To% - T +-— Ts =T + aaFaS
) o A (T2 bs ) ( 2 bo ) si'g
Dl
All(Tl - Tbl)+ = (Tl Tbl) - eJiFPP - aSlFSs]

Dl

1Although the stipulated conditions are that v and & are zero, the
effect of that stipulation can be tested via the partial derivatives of the
unknown with respect to those variables. The partial derivatives were derived

from the simultaneous solutions

in appendix B.
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Conditions for solution of ag:

(1) FpP eliminated. by virtue of simultaneous solution
(2) v =8=0

(3) View factors , = View factors

Substitutions:

Where possible, expressions have been simplified by writing them in terms of

Qsl-

- Equation for oag:

1 4, WC aT K 4 4 Y 4
lo8 = — . €07y + — — + = (Tl - T )+—| (Tl-T )-Gl oTs
Sl S(FS+ Faa>{ t A 1 do 1 A 1 bl A 1 bl
a
S we daT K 4 4 Y
~(Fq+Fa)s — 2+‘EK'2 ST Y 2(T2 - Tb2)+-EK 2(T2 TBZ)J }
Partial derivatives:
a(lsl :2
aQSZ Co
4 4 GS we aT K 4 4 Y
oTy%=| 0Ts™ = (Fa+ Foa)S —| + — == + = T5%- T + — Ts -
s [ S P T P A 6%(2(_ = ftf’a)J_
6€l S(FS+ Faa)
:ch‘*- FpP
S(Fq+ Fga)
[ Q,
S we aT K 4 4 Y
-(Fa+ F S — — == —] (To™- T + = - T
aaSl_el L ( S aa) € |2 chA =) d@ 2 ch 2( 2 b2) €A|2<T2 bZ)J
desn €o5(Fg+ Fya)

B -c1(0T2* - FpP)

B €2S(FS + F"adg)—“

Partial derivatives were developed with respect to two sets of independent
variables involving temperature and time; either set may be used. The first

uses Ti, Ts, 831, and 6z.
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a,¥c| O (4T s, ¥
8@Slzzhelch + T |1 5Ty <§9 L iy N
OT1 5(Fg+Fga)
d dT K Y

- heooTo3+ ¥E = S,
Sasl ) €1 [ €20T2 o 3% . 3 2AT2 + 3
aTZ €2S(FS + Faa)
3 we o_(dr
QSlZ.A 1 591 i
06+, S(Fg +Fya)

we 3 [aT

éaslz ‘1 2 962 <é§ 2
002 €x8(Fg+ Fga)

The second uses

Ty, Tz, dT/d6|1, an

3, K a3, Y
aCLSl hGlUTl +K|l)+Tl +

d dT/d8|z.

il

T, 8(Fgq+ Fya)
K 3, Y
- TS+ To
6(18 €1, <L|-€20 = Ll- A 2>
8T2 EZS(F + Faa)
we
aC(‘Sl - A 1
ATl  g(Feq +F.a)
a6 |4 ) a
we
Basl . -€1 7:'2>
aT|
S &t €x3(Fq +F_2a)
a0 |» STa
Basl ~ GlGSE - €2Clsl Bocsl ~
OFg eg(FS4-Faa) OFp
Basl__a(elasz-egasl) Basl__
OF4 oP

ea(Fg +Fga)
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aasl B elasz - ousle2

oS €25

aCLSl ~ Fa(El@SZ = 62@81)

da eo(Fg +Fya)
c aT
BGJS]. ) K N d—e- N

owy S(Fg+Fgua)

aT
2 40 |2
aWZ €2S(FS+ Faa)

C
aCLSl -€1 K

W aT
%, All 36|,
dcy S(FS+Faa)

W aT
aCLS:I__ €1 KIZ 55

dcg  €25(Fg+ Faa)

+ K (T1% - Tgl) +Y. (T - Tbl)]

» -wc| aT
Qg 3o |y

aAl - Alzs(FS+ Faa)

aT 4 4 '
aasl—€1 ‘:Wclz a0ln +Ko(T2* - Tb2)+ Yo(Tz -sz)]
aAg . : €2A228(Fs+ Faa)

K 3 Y
-1 = + =
dag <A|1L*Tb1 i

OTp, S(FS+ F.a)

X 3 Y
oag, _ L <K |2LLTLb2-lL K|2>
asz €2S(FS+ Fgaa)

When a common base plate is used for both sensors, and a single temperature
measurement is made, the partial derivative is the sum of the previous two.
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X
aasl:=—<?

3 Y K : Y
1uTbl+-—A_|l>+€l <K|2AT%2+K|2>" .

0Ty S(Fg+Fga)

dag, TL* - T5,
BKl AlS(FS + Faa)

. a'OLSJ_ 'el(r_raél - ng)
Kz . ephpS(Fg+Faa)

Sasl B Tl = Tbl
oY, Als(FS +F_a)

dag _ 7—€71(T2 - Ty,)
Yz e2AzS(Fg+F a)

2
aCLSl FaaS

561 S(FS+Faa)

5&81 -€1Fga8

562 GZS(FS +Faa)

dog e20T2” - (Fg+ Fga)Sag,, +
ovy
o FpP
S(FS +F_a)

dag "[610T14 - (Fg+Fga)Sag

5V2

~-€ lFPP

- €ES(FS + Faa)

29ee footnote 1, ﬁagé 33

1

e=S(Fg +Faa) -

we aT K 4 4
— | += Ts® - T + =
A |z do]2 Alz( 2 bzA),,,A

Y

2(T2 - Tbg)

€25(Fg +Fga)

we dT 4 4
+ = —| (Ty Tbl)+

ary L X
Ay dely AL

B
A

1(Tl . Tbl):]

€28 (Fg + Fa-a)
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Conditions for solution of as/e:
(1) (FS + Fya)S eliminated by virtue of simultaneous solution
(2) v=8=0

(3) View factors Il = View factors

2
Equation for as/e:
4 we daT K 4 4 Y
- e PP+ X S| 2| (ret-mE )+ 2| (7y -T
ag| %Sz I:EJ_OT:L P G, Al(l by) Al(l bl)]
1 T
cr | enoTo? - eoFoP+ Y] AL LK} (po4_ 2 )4 X (7, -m
1 L 20712 PPl sl 2( 2 b2) A 2( 2 b2)

Partial derivatives:

The above equation is for og divided by €31. Therefore, the partial
derivatives of as/e|l with respect to all variables except €1 are those
for ag divided by €i. The partial derivative with respect to €7 1s as
follows:

a &, . W aT K Y
S X T 4o FoP) - 2| To? -~ eoFpP+ 2| S| + 2 (1o -T2 )+ 2| (T5 -T
")_6—1: SZ(Ul P) € 1‘_6262 €2'p Als 482 A2(2 b2> A2(2 bz)
e i 4 we 4aT K 4 4 Y

€ €x0Ts” - exFP+—1 —=! += To®=- Ty )+ = (To -T

1L2 2 2i'p 2 |o 38 f2(2 bz) n2(2 bg)

Conditions for solution of as/e:

(1) FPP eliminated by virtue of simultaneous solution
(2) v=58=0

(3) View factors |, = View factors |,

Equation for as/e:

Q.

S 1 4 wel| AT K 4 4 Yl { 2
2| = <oTy+ —| = = (r1* -T2 )+ = (Ty - )-10oT
e lx S(Fq+ Fga) {- T eAl; do|y €A 1( * b7 €A 1< 17 %oy Z

(09
g we dT K 4 4 Y
- + S = = =] +—= T>" - T + =] (T2 -T
(FS Faa) c |7 cAls d0|s A 2( 2 bz) €A|2( 2 bz)J:}

38



Partial derivatives:

The above equation is for ag divided by €;. Therefore, the partial
derivatives of as/e|l with respect to all variables except €3 are those
for ag divided by e€1. The partial derivative with respect to €y is as

follows:
,
JES dwel, S| 4R (Ta%-TE )+ v (T, - ]
d e [ ll as v 1(T1 bl) (T2 Tbl)
Bel €12AlS(Fs+ Faa)

Conditions for solution of «¢:

(1) (Fq + Fya)8 eliminated by virtue of simultaneous solution
(2) v=3=0

(3) View factors ]l = View factors

Substitutions:

Where possible, expressions have been simplified by writing them in terms of
€1 .

Bquation for e:

€l: ___l___ WC
oT1*- FpP A

ar
2 do |2

Y CLS:L
T,% - Y+ =| (Ty-1T L 4.
‘ (Ty* A|1( 1 bl):l o, [62(OT2 FpP)

ld@

1

(T2® - m5,) + {-‘2(1"2 - sz)]j

wC

A

+_.
Als

Pagtial derivatives:

4 we dT
dey _eg(ch_ : FP_P~)7+ . @ |2 il (To* - Tb +_I (Ts - Ty, )
05y CL82(0’1-‘3_4~ FpP)
S(Fg +Fga)
oT %= FpP
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we
ael -G»Sl |:€2(O'T2 -FPP)+

degA

2
aase @Se(OTl - FPP)

418 S(FS4-F a)

ag_(oT2* —FPP)

861 QS (GT24— FPP)

des ag, (0T - FpP)

‘ (T2* _—

]

Partial derivatives were derived with respect to two sets of independent
variables involving temperature and time; either set may be used. The first

uses T3, T, 81, and B2

de [““’Tls T D g ]
= _ c 11
OT1 oTl4 FPP
Y

a be oo+ HE JpaE
dey _ 2 [ =72 T aT2 _______ Al
561 - < |1>
001 ch - TP

a WC
Bel _ S A 592

062 qsz(oTl - Fp P

The second uses T3, Ts, dT/d6|., and dT/d6|s.

3, 3, Y
ael =-<)4-€lOTl A‘»l)-l-T »_A

dTy oT1%- FpP S
3, K 3, Y

ael —asl <ll‘€2O'T2 + K‘ELI-TZ- + K J

OTo QSZ(0T14-FPP)

Lo




w

C
: 661 _ A ll

UT14
1

4T
o =—
de

561

- FPP

wC
C(;Sl I—

2

> 4T
do

2

ael_ P(ela‘SZ -€2a'Sl) ’ Bel

4
oz,Sa(ch -F

pF)

OFp g (oT1%- FpP) Fg

3el= FP(elaSE —€2stl) aElz

aP : Q..S (0T14—F
2

OF 4

Bel_o

c

aEl___ A

ar
1 do

oF) 38

1

an 0T14

-F

P

P

. S d_Tl
deq SlAlz délz

dws OLSZ(OT14 - FpP)

- w| 4T
aelz All del

aCl O’Tl4— FPP

deq *S1

W
A

dTI
2

2 do

deo OLSZ(OT14 - FpP)

dey wc|:L

oA

a6

4_m4é -
|l+ Kl(Tl T‘bl)+Yl(Tl T’bl)

A1Z(0Ty % - FpP)

L1



aT 4_ma
861— —@Sl \;WClZ @ 2+ Kg(Tg - Tb2)+ Yg(Tg* T‘bg)]
dAs ag 82(oT1* - FpP)
K L 3 Y
Sl pe 4 L
861 _A 1 bl Al

OTp, oTy% - FpP

When a common base plate is used for both sensors, and a single temperature
measurement is made, the partial derivative is the sum of the previous two.
X Y K
= LTS+ L =
561_A|1 017 x|, "Si\A&

3 Y
Zth2+ K‘Q

Oy oTy*- FpP ag,_(0T1* - FpP)

X Y
561 _ -aSl <K K

LS
2 b2’
OTp,, OLSE(OTJ_‘L—FPP)

561 _ _(Tl4_ T-gl)
aKl A_’L(O’Tlé—FPP>

4 4
a€l CXIS:L(Tg - T-be)

Ko aSEA2(0T14 - F,P)

ael: -(Tl -Tbl)
oYy Az(oTy* - FpP)

QSl(T2 - T—be)

561 -
5Y2 a52A2<0T14 - FPP)

daTr X FR— Y
- To4- FpP) - ae FaS+ 28| 22| 4+ &) (motopd YV =) (1, -
sael_- [62(0 > pP) ag, FgS+ = _ ol tA 2( > bg) n 2( 2 ~Tp,)
38, a82(0T3_4 - FpP)
~ -F as
oT;%- FpP

3See footnote l, page 33.
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we aT 4_
ael—_asl [eg(ng -F P)- g FSS4-A‘ s Al (Ts Tb + —| (To - Ty )]
LR usa(ch - FpP)
. aSlFaaS
ag, (oT1* - FpP)
Bel__ —FPP

81/1 OT14- FPP

a€l_ CLS:LFPP

81/2 @82<0‘T14- FPP)

Conditions for sclution of e€:
(1) FPP eliminated by virtue of simultaneous solution
(2) v =5=0

(3) View factors = View Ffactors

1 2
Substitutions:
(1) Let Dg represent
& daT
o4 - | oTot - (F.+F a)s 8| +¥| 4| L K[ (poe_pr y4 L4 (o -m J
5o ot - (rgrmges B L2 A LK (e omg e L (o)

(2) Where possible, expressions have been simplified by writing them in
terms of €.

Equation for e:

we aT K 4 4 Y
¥ o SE (mptomt )y -2t (7 -T
(Fg+ Faa)sag, - 2, asly A|1( 1 by) All( 1 b;)
€l= - - . R —
&
S we aT K 4 4 Y
T1%= | 0Ts? - (Fa+ Fga)s —= wer oo —_l o 1 Y+ L (7, -
. [O 2®- (Fe+Fa2)s |+ 4| ol " cal (et Tha)t g (T2 - T
4T 4 ma Y
Fo+ Fga)sa, wel &2 &) (7i%-18 ) =-=| (1o -1
_( S ) SR, aely .511( - by All( 1= Tp,)
gT1% - F.P

P
k3



Partial derivatives:

dey (Fg+ Fa)s
81 oTod - (F.+ T a)s 8| +¥¢| 4T| L K (T.4—T4 y+ 2| (75 - )
+ 2 S Ta € |2 ebl|o do|s eal|s B T b2’ CA|,VT2 T The
ael =—61(FS+Faa)S
8@52 e2(Dg)
68
s| _wc dT K 4 a4 Y
Fo+F.a)s = ) To4- ¢ )- 2| (T5-T
ey | Fsrrae)s B 2] & X (o ng)- T @eom) |
dea 62(D6)

Partial derivatives were developed with respect to two sets of independent
variables involving temperature and time; either set may be used. The first

involves T3, Ts, 61, and Oo.
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The second involves T;, To, dT/de]l, and dT/dng.
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When a common base plate is used for both sensors, and a single temperature
measurement is made, the partial derivative is the sum of the previous two.
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*See footnote 1, page 33.
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Conditions for solution of S:

(1) F.P eliminated by virtue of simultaneous solution
P Y

2y v=5=0
(3) View factors . = View factors
Substitutions:

Where possible, expressions have been simplified by writing them in terms of
S,

Equation for S8:
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Partial derivatives:
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Partial derivatives were developed with respect to two'sets of independent
variables involving temperature and time; either set may be used. The first
uses Tp, To, 61, and B2.
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The second uses Ty, Ts, dT/d0]i, and 4T/d6]|=.

28 _
891

CI,

S
€

hoT, X
68 _ €A 1

—e_ €

-(bore3+ £ X
S <o 2 €A o eAln

5’1‘2 e
(7S ___§
<—E— LT 2> (FS+Faa)
we
BS - B cA 1
aT fo? a
o — S S
a6 1 <—E- 1 - — 2> (FS+Faa)
LS
as ehlz
aT (0! a :
o == S S
—_ - — F F
ae |z €lr € 2> ( s aa)
% _ -8 B _,
BFS FS+Faa éFP
o8 _  -aS B_S_zo
BFa _FS +Faa oP
_6_§= -FgS
da Fq+Foa

4o



S| &
08 _ eAly 4B |1
a a
Oy <—S— -—SZ>(FS+F a)
€ |1 €
..c] 4t
38 _ eAls d8|o
Ovz g %3
-6—1—?2 (FS+F a)
o5 _ eA|
dc . Q
* <J§ -5 > (FS-FF a)
€ |1 €
SN
a8 _ €A2d92
8C2 CI/S O“S
<?1'€_ (Fq+Fga)
we daT 4
- S 4 B (rp%-12 )+ =] (71 -
o8 [e de |1 € 1( * b, € 1( * bl)]
BA;,_— CL 08
A,2 <Ji| - = > Fo+F_a
2 (2] -2],) Forrea)
we dT 4 4
wel 4dT| 4 K} (p.%4-m + 2 (T -T
3 € |2d0ls €la ( b) 2~ Tp,)
oA g
2 A22<— —S >(F -Fa
€
_<£
o8 _
) (e
oy <—S _SZ\)(FS+F a)
€ |1 €
ype 4 L
3 _ 2 P2 eAls
Oy,

When a common base plate is used for both sensors, and a single temperature
measurement is made, the partial derivative is the sum of the previous two.
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“See footnote l; page 33.
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Conditions for solution of a:

(1) FpP eliminated by virtue of simultaneous solution
(2) v=5=0

(3) View factors , = View factors

Substitutions:

Where possible, expressions have been simplified by writing them in terms of

a.

Equation for a:
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Partial derivatives were developed with respect to two sets of independent

variables involving temperature and time; either set may be used.

uses

Ty, Tz, 01, and Oz.
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The second uses T;, Tp, dT/d6|., and 4T/d60|z.
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When a common base plate is used for both sensors, and a single temperature
measurement is made, the partial derivative is the sum of the previous two.
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85ee footnote 1l, page 35.
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Conditions for solution of P:

(1) Fga eliminated by virtue of simultaneous solution.

(2 v=58=0

(3) View factors = View factors

1 2
Substitutions:

Where possible, expressions have been simplified by writing them in terms of
P.

Equation for P:
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Partial derivatives were developed with respect to two sets of independent
variables involving temperature and time; either set may be used. The first

uses Ti, To, 631, and 65.
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The second uses Ty, Ta, dT/d6|:1, and 4T/d6|».
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When a common base plate is used for both sensors, and a single temperature
measurement is made, the partial derivative is the sum of the previous two.
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10.

11.

62

REFERENCES

Neel, Carr B.: Measurement of Thermal-Radiation Characteristics of
Temperature-Control Surfaces During Flight in Space. ISA Trans.,
vol. 3, no. 2, 1964, pp. 108-122.

Pearson, B. Douglas, Jr.: Preliminary Results From the Ames Emissivity
Experiment on OSO-II. Thermophysics and Temperature Controcl of Space-
craft and Entry Vehicles, Gerhard B. Heller, ed., Academic Press, New

York, 1966, pp. 459-472.

Snoddy, William; and Miller, Edgar: Areas of Research on Surfaces for
Thermal Control. NASA SP-55, 1965.

Lewis, D. W.; and Thostesen, T. 0.: Mariner-Mars Absorptance Experiment.
Thermophysics and Temperature Control of Spacecraft and Entry Vehicles,
Gerhard B. Heller, ed., Academic Press, New York, 1966, pp. 4Ll-457.

Schafer, C. F.; and Bannister, T. C.: DPegasus Thermal Control Coatings
Experiment. ATAA Paper 66-419, 1966.

Pearson, B. Douglas, Jr.: Albedo and Earth-Radiation Measurements From
0S0-II. ATAA Paper 67-330, 1967.

Millard, John P.; and Neel, Carr B.: Measurements of Albedo and Earth
Radiation From 0SO-I. ATIAA J., vol. 3, July 1965, pp. 1317-1322.

Linton, Roger C.: Barth Albedo Studies Using Pegasus Thermal Data.
ATAA Paper 67-332, 1967.

Nordberg, W.: Research With Tiros Radiation Measurements. Astronautics
and Aerospace Eng., vol. 1, no. 3, April 1963, pp. T76-83.

Suomi, V. E.; and House, F. B.: The Geographical Distribution of Earth
Albedo. DPaper presented at XITI General Assembly of the International
Union of Geodesy and Geophysics (Berkeley, Calif.), Aug. 1963.

Kline, 8. J.; and McClintock, F. A.: Describing Uncertainties in Single-
Sample Experiments. Mech. Eng., vol. 75, no. 1, 1953, pp. 3-8.



¥ —— 8961 ‘Aa(BueI-VSVN

99Le-v

€9

TABLE I.- MAGNITUDES AND UNCERTAINTIES OF VARTABLES EMPLOYED IN ILLUSTRATIVE EXAMPLES

) White coating Very low ag/e { Optical black Solar constant
veriebie | Magnitude I Uncertainty Megnitude | Uncertainty | Magni tude LUncertainty " Megnitude Uncertainty
ag,  Dimensionless ’ 0.18 | * 0.04 0.00k4 i 0.98 ! 0.02 C0.97 0.02
e, Dimensionless | 0.88 | 0.02 i 0.80 | 0.2 ‘ 0.95 j 0.02 S "{187;05 gg; gzi s ;i :é
s, Wi %0 0.02 5 T C T C R R CHE (4
P, W/ |20 0.10 P ™ O N C R @ (2)
a, Dimensionless | 0.30 0.20 ! (2) (3) ' (&) (2) (3) (2)
Fg,  Dimensionless 0.32 0.01 Fgq | & (®) | (3 (2) : 1 (2)
Fp,  Dimensionless ® 0.02 Fp | () () | (%) ® ) (2)
F,s  Dimensionless (® 0.05 Fy G (& (2 (2 0 ®
LZB - 0.30 0.0L w @ * ® *® ® )
e,  J/ek 0.80 0.10 ¢ @ 3 @ 0 ® @) ()
T, K *) 1 *® ® (®) ® (®) ®
a1/86, °K/sec *) {min vaiﬁioo?;ége%/sec ) ) *) ‘ (*) ° 0.005
Ty K 300 1 @) ' @& e ® 350 @)
A, s 0.0005 0.0L A !‘ @ (3 NE ! (2 : ® ' (®)
XK,  W/Ok* 1l.saome ) 0.10 X * (@) l (@) (® \ ® 2 ®
Y, W/ 0 0 (& (2 (® (2 (® (&
8, Dimensionless 0 0 (2 ) (® (2 (3 ®
vy Dimensionless 0 0 (2) (2) (2) (®) (®) ®

values not required for illustrative example,
2yglues are the same as those for the white coating.
3Values are functions of position in orbit; these values determined by computer.
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